Monday, March 4, 2019

Hamptonshire Express

Arjun R. Sabhaya doing 529 Hamptonshire articulate October 16, 2012 PROBLEM 1 A. The simulated function given in the Excel spreadsheet Hamptonshire Express line of work_1 allows the consumptionr to find the optimum measurement of publishers to be stocked at the newly formed Hamptonshire Express free-and-easy Newspaper. Anna blaze enumerated the daily implore of newsprints to be on a convening shopworn scattering stating that daily demand go away have a mean of 500 newspapers per day with a standard deviation of one C newspapers per day.Using the function provided, the best stocking step, which increases evaluate derive, is mulish to be approximately 584 newspapers. If 584 newspapers were to be ordered, Hamptonshire Express will net an pass judgment pull ahead of $331. 436 per day with an expected match rate of 98%. Any memorial ordered preceding(prenominal) 584 will produce a loss of cabbage repayable to stocking inventory over expected demand ca victimis ation an imbalance between the gains and losses due to the respective over-the-hill and underage speak tos. The table below asidelines the optimal heart and soul of daily expected derive.Profits rise until the 584 newspaper mark some(prenominal) potential increase in step stocked will devolve daily expected profit for every newspaper ordered higher(prenominal)(prenominal) up 584. Stocking measuring rod unremarkable Expected Profit 575 newspapers 331. 323 576 newspapers 331. 347 577 newspapers 331. 369 578 newspapers 331. 387 579 newspapers 331. 403 580 newspapers 331. 415 581 newspapers 331. 425 582 newspapers 331. 431 583 newspapers 331. 435 584 newspapers 331. 436 585 newspapers 331. 435 586 newspapers 331. 430 587 newspapers 331. 423 588 newspapers 331. 413 89 newspapers 331. 400 590 newspapers 331. 385 Calculations Cr=cu/cu+co where Cr= critical ratio. Cu=1-0. 2=. 8 Co=0. 2 Therefore, Cr= . 8/. 8+. 2=. 8 which is equal to . 84 (z value) on the standard normal distr ibution function table. To find the optimal stocking mensuration that maximizes expected profit, we will hire mean and standard deviation in formula shown Q=mean +z*(SD) 500+. 84*100=584. B. Using the Newsvendor Formula given, Q=? +? -1(Cu/Cu+Co )? , where Q=optimal total ?= mean of expected demand ?= standard distribution of expected demand -1= the inverse of the standard normal distribution function Cu= underage embodys (Sale price cost), or ($1. 00-$0. 20) Co= superannuated costs (cost salvage value), or ($0. 20 $0), We can estimate the optimal stock quantity. The values allow us to input the z statistic, and the overage/underage costs in the given equation to add up the equation and answer shown below. The output of the Newsvendor equation, while different than the transcend function (due to rounding error), is consistent with the optimal stocking quantity found by the Excel model. Q= 500+ (. 8601)-1*(. 80/. 80 + . 20) * 100 = 593. 1244 PROBLEM 2 A. The given simulatio n model in the Excel spreadsheet Hamptonshire Express conundrum_2 allows the user to find the optimal number of hours per day to be invested into creating the compose section to maximize expected profits for the Hamptonshire Express Daily Newspaper. bungl at the table below, Anna can pass off 4 hours, where (H=4), Hours Spent (H) best Expected Profit 2. 00 $367. 91 2. 25 $368. 84 2. 50 $369. 58 2. 75 $370. 17 3. 00 $370. 61 3. 25 $370. 94 3. 50 $371. 16 3. 75 $371. 29 4. 00 $371. 33 4. 25 $371. 29 4. 50 $371. 18 4. 75 $371. 01 5. 0 $370. 77 B. Anna twinklings choice of sweat is at the point where the borderline cost of expense the tautological sentence to develop the profile section = borderline benefit of spending the extra time to develop the profile section or the point where profit is maximized. If she spends the extra time to develop the profile section past where marginal cost = marginal benefit, she wont be able to cause enough demand for her newspaper, but if sh e spends less time than where marginal cost = marginal benefit, she wont have a bore newspaper and misses out on additional sales events, which leads to increased profits.To find the optimal profit level, you would set $10 = to the marginal benefit, or $10= ((0. 8 *50) / (2h)) and figure for H which = 4 hours. C. Using a table to compare the residue between problem 1 and problem 2, respectively, we can see the unmistakable differences between the optimal stocking quantity and daily expected profit figures. Stocking Quantity Daily Expected Profit 1 584 331. 44 2 685 371. 33 The stocking quantity and expected profits are higher in the fleck scenario because of the extra time spent to improve the quality of profile section.By spending the extra time to improve the profile section, Anna glimmer increased the overall quality of her newspaper, which will, most likely, lead to an increased probability of demand for her newspaper around the area. This increased demand will raise An na Sheens stocking quantity and the daily expected profits that are associated with that individual stocking quantity. Problem 3 A. Assuming the number of hours Anna Sheen will spend develop the profile section will = 4 Ralph Armentrouts optimal stocking quantity is 516, as portrayed in the table below Stocking Quantity Daily Expected Profit 513 62. 131 14 62. 139 515 62. 143 516 62. 145 517 62. 144 518 62. 140 519 62. 133 520 62. 124 B. Ralph Armentrouts optimal stocking quantity is less than Anna Sheens in Problem 2 due to the retailing extension of the run chain. Armentrouts overage cost ($0. 80 as he purchases them from Sheen minus $0 of salvage value) is higher than his underage cost ($0. 20 $1 sale price minus $0. 80 purchasing cost). Due to this, Armentrout has less way of life than Sheen for a profit margin making it a higher assay for him to carry a greater amount of inventory, which ultimately affects the fill rate of the submit chain.C. The optimal time spent to impr ove the quality of the profile section is determined by the table below The profit Sheen will stand to perform in the combined fork up chain is optimal at 2. 25 hours spent per day. Sheens profit rises with each 15 minute interval until 2 hours and 15 minutes is reached. The marginal benefit, from the additional time spent to improve the paper, will increase expected demand of newspaper, however, if too much time is spent, the marginal costs, associated with the additional time, will outweigh the associated marginal benefits.Expected demand is more immune to high levels of time spent, essentially, Sheen is hurting profits above 2. 25 hours spent per day on improvements. Sheens optimal amount of hours spent is lower, in this differentiated channel, as compared to Problem 2, due to Sheens lower marginal benefit being received due to the split supply chain. It wouldnt make sense for Sheen to spend more time to improve her newspaper if she has to split a constituent of the profits w ith Armentrout. Due to this, she will put less effort in and get more expectation of demand.D. Transfer P Stocking Q Profit Ralphs P Annas P Annas E Fill value . 70 510 333 104 229. 38 1. 563 89% .75 501 327 81 246. 64 1. 891 87% .79 493 321 62 259. 11 2. 176 86% .80 491 319 57 262. 10 2. 25 85% .81 488 317 53 264. 42 2. 326 85% .85 478 308 34 274. 29 2. 641 83% .90 459 292 11 280. 68 3. 063 79% If the transfer price, from Sheen to Armentrout, would light, Armentrout would ultimately gain a large marginal benefit out of the purchasing deal with Sheen.Due to the increase of Armentrouts profit margin, he would tend to stock more newspapers, which would increase the supply chains fill rate. However, this, in turn, would cause Sheens profits, from the deal, to decrease and would ultimately lower her motivation to improve the newspaper, which leads to a decrease in expected demand and loss of potential profits. E. Efforts and stocking levels will be lower in a differentiated channel t han in an integrate riotous due to the multiple entities that are present in the supply chain.The multiple retailing and manufacturing entities, in the supply chain, allow the profits to be split by percentage rather than totaled to one firm who does both functions. Problem 4 A. The optimal stocking quantity for Armentrout, in this scenario, was determined to be 409 newspapers as shown by the table below The optimal stocking quantity is lower at 409, in this scenario, as compared to 516 in Problem 3a. The optimal stocking quantity is lower, because Armentrout has an alternative to The Express with Ralphs Private Eye.B. The stocking quantity in the main differs from Problem 1, 2, and 3, because Armentrout underage costs have decreased, in this scenario, due to the consumers alternative to purchase Private when Express has a stock out to consumers. However, there are major differences that one should consider. The first two problems use an integrated point of view, as related to th e supply chain, which allows for a higher optimal stocking quantity. On the other hand, Problems 3 and 4 use a differentiated channel.However, In Problem 3, while Armentrout tried to keep risk low by ordering a lower optimal stocking quantity, which was supply by his low expected margins (due to his imbalanced underage and overage costs), Armentrouts optimal stocking quantity changes when Private is introduced into the mix. In Problem 4, Armentrout makes more profit on Private, but there is a lower expectation of demand for Private. Due to this, he must still stock Express to maximize profits. To demonstrate this phenomenon, which will ultimately decrease optimal stocking quantity, the new overage cost would have to be set. In the Problem 4 scenario, Co= $0. 0 40% * $0. 40 = $0. 16. The Newsvendor model will withal allow one to arrive at these conclusions. C. Armentrouts overage cost would increase by $. 03 to $. 83, while his underage costs would be $. 01. (New Express profit $. 17 New Private profit $. 16) The imbalance would nullify the critical ratio, which would lead to a reduction of the optimal stocking quantity to a decently lower amount. Problem 5 A. The buy-back price initiative allows Sheen to drop Armentrouts overage costs, which leads to an increase in his optimal stocking quantity and a win-win situation for Sheen and Armentrout.If Sheen would set the buy-back price at $. 75, this would maximize the total supply chains profits as shown in the table below. At $. 75, Armentrouts optimal stocking quantity would be 659 newspapers. B. The combination of buy-back price and transfer price is roughly $1. 02 and $1. 025, respectively, as shown in the table below. The optimal level of expected profit is maximized when Sheen, the manufacturer, in this scenario, has a high expected profit margin, while Armentrout, the retail merchant, has a negative expected profit.Armentrout is basically a non-factor in this supply chain and allows this scenario to ac t as one integrated chain although technically it is differentiated. C. The fixed franchise fee would not be factored into Armentrouts overage and underage costs, so it wouldnt have an effect on his stocking decisions. If Sheen were able to impose a franchise fee to Armentrout, however, she would not have a reason to get by newspapers at all, since her profits would be coming from franchising rather than newspaper sales.Problem 6 A. The VMI scheme would allow Sheen to be able to establish the optimal levels of effort and allow her to set the optimal stocking quantity in coitus to her maximizing the difference between her marginal benefits and her marginal costs basically she is in guarantee of the stocking decision rights of the Express to maximize total profits. Since she has examine over stocking quantity, Armentrout could not make much of a profit using a differentiated supply chain model.However, due to proposed slotting allowance, Armentrout has the ability to make more of a profit than he would have battling against Sheen for stocking rights of the Express, if he would go for more of an integrated model and allow Sheen to control the Express. B. Since Armentrout would not care about sales directly (due to him collecting a slotting fee regardless of a sale or not), under the VMI plan versus the differentiated model, Armentrout cogency lose potential sales he might have gotten if he had a say in the daily stocking quantity of the Express.If Armentrout had the chance to make a potential profit off of the consumers, he might try harder to pay attention to demand. Because of this reality of manufacturer versus retailer, Sheen might not understand the local demand of the area as well as Armentrout, due to him being the ground level retailer and witnessing the subtle changes in daily demand.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.